Part Number Hot Search : 
4HCT0 1414626 CMD5D13 TC2054 1N1002 AM2921DE LX901 1N3162R
Product Description
Full Text Search
 

To Download HYS72D128020GR-7-B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  infineon technologies 1 2002-09-10 (revision 0.91) hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules 2.5 v 184-pin registered ddr-i sdram modules 256mb, 512mb &1gbyte modules pc1600 & pc2100 preliminary datasheet revision 0.91 description the hys 72dxx0x0gr are industry standard 184-pin 8-byte dual in-line memory modules (dimms) organized as 32m 72 (256mb), 64m 72 (512mb) and 128m 72 (1gb). the memory array is designed with double data rate synchronous drams for ecc applications. all control and address signals are re-driven on the dimm using register devices and a pll for the clock distribution. this reduces capacitive loading to the system bus, but adds one cycle to the sdram timing. a variety of decoupling capacitors are mounted on the pc board. the dimms feature serial presence detect based on a serial e 2 prom device using the 2-pin i 2 c protocol. the first 128 bytes are programmed with configuration data and the second 128 bytes are available to the customer.  184-pin registered 8-byte dual-in-line ddr-i sdram module for pc and server main memory applications  one bank 32m 72, 64m x 72, and two bank 64m x 72 and 128m 72 organization  jedec standard double data rate synchronous drams (ddr-i sdram) with a single + 2.5 v ( 0.2 v) power supply  built with 256mbit ddr-i sdrams in 66- lead tsopii package  programmable cas latency, burst length, and wrap sequence (sequential & interleave)  auto refresh (cbr) and self refresh  all inputs and outputs sstl_2 compatible  re-drive for all input signals using register and pll devices.  serial presence detect with e 2 prom  jedec standard mo-206 form factor: 133.35 mm (nom.) 43.18 mm (nom.) 4.00 mm (max.) (6,80 mm max. with stacked components)  jedec standard reference layout: raw cards a, b and c  gold plated contacts  performance: -7 -8 unit component speed grade ddr266a ddr200 module speed grade pc2100 pc1600 f ck clock frequency (max.) @ cl = 2.5 143 125 mhz f ck clock frequency (max.) @ cl = 2 133 100 mhz
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 2 2002-09-10 (revision 0.91) ordering information typ e compliance code description sdram technology pc2100 (cl=2) : hys 72d32000gr-7-b pc2100r-20330-a1 one bank 256 mb reg. dimm 256 mbit (x8) hys 72d64000gr-7-b pc2100r-20330-b1 one bank 512 mb reg. dimm 256 mbit (x4) hys 72d64020gr-7-b pc2100r-20330-a1 two banks 512 mb reg. dimm 256 mbit (x8) hys 72d128020gr-7-b pc2100r-20330-c1 two banks 1 gbyte reg. dimm 256 mbit (x4) (stacked with soldering process) hys 72d128021gr-7-b pc2100r-20330-c1 two banks 1 gbyte reg. dimm 256 mbit (x4) (stacked with laser welding process) pc1600 (cl=2): hys 72d32000gr-8-b pc1600r-20220-a1 one bank 256 mb reg. dimm 256 mbit (x8) hys 72d64000gr-8-b pc1600r-20220-b1 one bank 512 mb reg. dimm 256 mbit (x4) hys 72d64020gr-8-b pc1600r-20220-a1 two banks 512 mb reg. dimm 256 mbit (x8) hys 72d128020gr-8-b pc1600r-20220-c1 two banks 1 gbyte reg. dimm 256 mbit (x4) (stacked with soldering process) hys 72d128021gr-8-b pc1600r-20220-c1 two banks 1 gbyte reg. dimm 256 mbit (x4) (stacked with laser welding process) note: all part numbers end with a place code (not shown), designating the silicon-die revision. reference information available on request. example: hys 72d32000gr-8-b, indicating rev.b die are used for sdram components the compliance code is printed on the module labels and describes the speed sort fe. ?pc2100r?, the latencies (f.e. ?20330? means cas latency = 2, trcd latency = 3 and trp latency =3 ) and the raw card used for this module.
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 3 2002-09-10 (revision 0.91) pin definitions and functions a0 - a11,a12 address inputs (a12 for 256mb & 512mb based modules) v dd power (+ 2.5 v) ba0, ba1 bank selects v ss ground d q 0-d q 63 data input / output v dd q i / o driver power supply cb0 - cb7 check bits (x72 organization only) v ddid vdd indentification flag ras row address strobe v ddspd eeprom power supply cas column address strobe v ref i / o reference supply we read / write input scl serial bus clock cke0, cke1 clock enable sda serial bus data line d q s0 - d q s8 sdram low data strobes sa0 - sa2 slave address select ck0, ck0 differential clock input nc no connect dm0 - dm8 d q s9 - d q s17 sdram low data mask / high data strobes du don?t use cs0 -cs1 chip selects reset reset pin (forces register inputs low) * ) * ) for detailed description of the power up and power management on ddr registered dimms see the application note at the end of this datasheet address format density organization memory banks sdrams # of sdrams # of row / bank / columns bits refresh period interval 256 mb 32m x 72 1 32m x 8 9 13 / 2 / 10 8k 64 ms 7.8 s 512 mb 64m 72 1 64m 418 13 / 2 / 11 8k 64 ms 7.8 s 512 mb 64m x 72 2 32m x 8 18 13 / 2 / 10 8k 64 ms 7.8 s 1 gb 128m 72 2 64m 436 13 / 2 / 11 8k 64 ms 7.8 s
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 4 2002-09-10 (revision 0.91) pin configuration pin# symbol pin# symbol pin# symbol symbol 1 vref 48a0 93vss 140dm8 / d q s17 2d q 049cb2 94d q 4 141 a10 3vss 50vss 95d q 5 142 cb6 4d q 151cb3 96vdd q 143 vdd q 5d q s0 52 ba1 97 dm0 / d q s9 144 cb7 6d q 2 key 98 d q 6 key 7vdd 53d q 32 99 d q 7 145 vss 8d q 354vdd q 100 vss 146 d q 36 9nc 55d q 33 101 nc 147 d q 37 10 reset 56 d q s4 102 nc 148 vdd 11 vss 57 d q 34 103 nc 149 dm4 / d q s13 12 d q 8 58 vss 104 vdd q 150 d q 38 13 d q 9 59 ba0 105 d q 12 151 d q 39 14 d q s1 60 d q 35 106 d q 13 152 vss 15 vdd q 61 d q 40 107 dm1 / d q s10 153 d q 44 16 du 62 vdd q 108 vdd 154 ras 17 du 63 we 109 d q 14 155 d q 45 18 vss 64 d q 41 110 d q 15 156 vdd q 19 d q 10 65 cas 111 cke1 157 cs0 20 d q 11 66 vss 112 vdd q 158 cs1 21 cke0 67 d q s5 113 nc 159 dm5 / d q s14 22 vdd q 68 d q 42 114 d q 20 160 vss 23 d q 16 69 d q 43 115 nc / a12 161 d q 46 24 d q 17 70 vdd 116 vss 162 d q 47 25 d q s2 71 nc 117 d q 21 163 nc 26 vss 72 d q 48 118 a11 164 vdd q 27 a9 73 d q 49 119 dm2 / d q s11 165 d q 52 28 d q 18 74 vss 120 vdd 166 d q 53 29 a7 75 du 121 d q 22 167 nc 30 vdd q 76 du 122 a8 168 vdd 31 d q 19 77 vdd q 123 d q 23 169 dm6 / d q s15 32 a5 78 d q s6 124 vss 170 d q 54 33 d q 24 79 d q 50 125 a6 171 d q 55 34 vss 80 d q 51 126 d q 28 172 vdd q 35 d q 25 81 vss 127 d q 29 173 nc 36 d q s3 82 vddid 128 vdd q 174 d q 60 37 a4 83 d q 56 129 dm3 / d q s12 175 d q 61 38 vdd 84 d q 57 130 a3 176 vss 39 d q 26 85 vdd 131 d q 30 177 dm7 / d q s16 40 d q 27 86 d q s7 132 vss 178 d q 62 41 a2 87 d q 58 133 d q 31 179 d q 63 42 vss 88 d q 59 134 cb4 180 vdd q 43 a1 89 vss 135 cb5 181 sa0 44 cb0 90 nc 136 vdd q 182 sa1 45 cb1 91 sda 137 ck0 183 sa2 46 vdd 92 scl 138 ck0 184 vddspd 47 d q s8 139 vss note: a12 is used for 256mbit and 512mbit based modules only
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 5 2002-09-10 (revision 0.91) block diagram: one bank 32mb x 72 ddr-i sdram dimm module hys72d32000gr using x8 organized sdrams on raw card version a pck pck d q 4 d q 5 d q 6 d q 7 d q 0 d q 1 d q 2 d q 3 dm d0 dm0 / d q s9 d q 12 d q 13 d q 14 d q 8 d q 9 d q 10 d q 11 dm d1 dm1 / d q s10 d q 20 d q 21 d q 22 d q 23 d q 16 d q 17 d q 18 d q 19 dm d2 dm2 / d q s11 d q 28 d q 29 d q 30 d q 31 d q 24 d q 25 d q 26 d q 27 dm d3 dm3 / d q s12 d q 36 d q 37 d q 38 d q 39 d q 32 d q 33 d q 34 d q 35 dm d4 dm4 / d q s13 d q 44 d q 45 d q 46 d q 47 d q 40 d q 41 d q 42 d q 43 dm d5 dm5 / d q s14 d q 52 d q 53 d q 54 d q 55 d q 48 d q 49 d q 50 d q 51 dm d6 d q 60 d q 61 d q 62 d q 63 d q 56 d q 57 d q 58 d q 59 dm d7 dm7 / d q s16 rs 0 cs cs cs cs cs cs cs cs d q s0 d q s d q s4 d q s1 d q s5 d q s d q s2 d q s d q s3 d q s dm6 / d q s15 d q s6 d q s7 d q 15 cb4 cb5 cb6 cb7 cb0 cb1 cb2 cb3 dm i / o7 i / o6 i / o1 i / o0 d8 i / o5 i / o4 i / o3 i / o2 cs d q s8 dm8 / d q s17 d q s d q s d q s d q s d q s ck0, ck 0 --------- pll * * wire per clock loading table / wiring diagrams cs0 rs 0- > cs : sdrams d0-d8 ba0-ba1 rba0-rba1 - > ba0-ba1: sdrams d0-d8 a0-a12 ra0-ra12 - > a0-a12: sdrams d0 - d8 ras rras - > ras : sdrams d0 - d8 cas rcas - > cas : sdrams d0 - d8 cke0 rcke0 - > cke: sdrams d0 - d8 we rwe - > we : sdrams d0 - d8 r e g i s t e r reset i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 notes: 1. d q -to-i / o wiring may be changed within a byte. 2. d q/ d q s / dm / cke / s relationships must be maintained as shown. 3. d q ,d q s, adress and control resistors: 22 ohms. 4. vddid strap connections strap out (open): vdd = vdd q 5. sdram placement alternates between the back and front of the dimm. v dd, v ss d0 - d8 d0 - d8 v dd q d0 - d8 d0 - d8 vref v ddid strap:seenote4 v ddspd eeprom a0 serial pd a1 a2 sa0 sa1 sa2 scl sda
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 6 2002-09-10 (revision 0.91) block diagram: two bank 64mb x 72 ddr-i sdram dimm modules hys 72d64020gr using x8 organized sdrams on raw card version a d q 4 d q 5 d q 6 d q 7 d q 0 d q 1 d q 2 d q 3 dm d0 dm0 / d q s9 dm d9 d q 12 d q 13 d q 14 d q 8 d q 9 d q 10 d q 11 dm d1 dm d10 dm1 / d q s10 d q 20 d q 21 d q 22 d q 23 d q 16 d q 17 d q 18 d q 19 dm d2 dm d11 dm2 / d q s11 d q 28 d q 29 d q 30 d q 31 d q 24 d q 25 d q 26 d q 27 dm d3 dm d12 dm3 / d q s12 d q 36 d q 37 d q 38 d q 39 d q 32 d q 33 d q 34 d q 35 dm d4 dm4 / d q s13 dm d13 d q 44 d q 45 d q 46 d q 47 d q 40 d q 41 d q 42 d q 43 dm d5 dm d14 dm5 / d q s14 d q 52 d q 53 d q 54 d q 55 d q 48 d q 49 d q 50 d q 51 dm d6 dm d15 d q 60 d q 61 d q 62 d q 63 d q 56 d q 57 d q 58 d q 59 dm d7 dm d16 dm7 / d q s16 rs 0 rs 1 cs cs cs cs cs cs cs cs cs cs cs cs cs cs cs cs d q s0 d q s d q s4 d q s1 d q s5 d q s d q s d q s2 d q s d q s d q s3 d q s d q s dm6 / d q s15 d q s6 d q s7 d q 15 cb4 cb5 cb6 cb7 cb0 cb1 cb2 cb3 dm d8 dm d17 cs cs d q s8 dm8 / d q s17 d q s d q s d q s d q s d q s d q s d q s d q s d q s d q s d q s ck0, ck 0 --------- pll * * wire per clock loading table / wiring diagrams cs1 rs 1- > cs : sdram d9-d17 ba0-ba1 rba0-rba1 - > ba0-ba1: sdrams d0-d17 a0-a12 ra0-ra12 - > a0-a12: sdrams d0 - d17 ras rras - > ras : sdrams d0 - d17 cs0 rs 0- > cs : sdram d0-d8 cas rcas - > cas : sdrams d0 - d17 cke0 rcke0 - > cke: sdrams d0 - d8 we rwe - > we :sdramsd0-d17 r e g i s t e r rcke1 - > cke: sdrams d9 - d17 pck pck cke1 reset i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 i / o0 i / o1 i / o2 i / o3 i / o4 i / o5 i / o6 i / o7 a0 serial pd a1 a2 sa0 sa1 sa2 scl sda notes: 1. d q -to-i / o wiring may be changed within a byte. 2. d q/ d q s / dm / cke / s relationships must be maintained as shown. 3. d q ,d q s, adress and control resistors: 22 ohms. 4. vddid strap connections strap out (open): vdd = vdd q 5. sdram placement alternates between the back and front of the dimm. v dd, v ss v dd q vref v ddid strap: see note 4 v ddspd eeprom d0 - d17 d0 - d17 d0 - d17
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 7 2002-09-10 (revision 0.91) block diagram: one bank 64mb x 72 ddr-i sdram dimm modules hys 72d64000gr using x4 organized sdrams on raw card version b rs 0a d q s4 d q s6 d q s2 d q 0 d q 1 d q 2 d q 3 d q 8 d q 9 d q 10 d q 11 d q 16 d q 17 d q 18 d q 19 d q 24 d q 25 d q 26 d q 27 d q 32 d q 33 d q 34 d q 35 d q 40 d q 41 d q 42 d q 43 d q 56 d q 57 d q 58 d q 59 d q s d0 d q s d q s d q s d q s d q s d q s d q s0 d1 d2 d3 d4 d5 d7 d q 48 d q 49 d q 50 d q 51 d q s d6 d q 4 d q 5 d q 6 d q 7 d q 12 d q 13 d q 14 d q 15 d q 20 d q 21 d q 22 d q 23 d q 28 d q 29 d q 30 d q 31 d q 36 d q 37 d q 38 d q 39 d q 44 d q 45 d q 46 d q 47 d q 60 d q 61 d q 62 d q 63 d q s d9 d q s i / o0 i / o1 i / o2 i / o3 d q s i / o0 i / o1 i / o2 i / o3 d q s i / o0 i / o1 i / o2 i / o3 d q s i / o0 i / o1 i / o2 i / o3 d q s i / o0 i / o1 i / o2 i / o3 d q s i / o0 i / o1 i / o2 i / o3 dm0 / d q s9 d10 d11 d12 d13 d14 d16 d q 52 d q 53 d q 54 d q 55 d q s i / o0 i / o1 i / o2 i / o3 d15 cb0 cb1 cb2 cb3 d q s d8 cb4 cb5 cb6 cb7 d q s i / o0 i / o1 i / o2 i / o3 d17 cs cs cs cs cs cs cs cs cs cs cs cs cs cs cs cs cs cs vss d q s1 d q s3 d q s8 dm dm dm dm dm dm dm dm dm dm dm dm dm dm dm dm dm dm d q s5 d q s7 dm6 / d q s15 dm5 / d q s14 dm4 / d q s13 dm1 / d q s10 dm2 / d q s11 dm3 / d q s12 dm7 / d q s16 dm8 / d q s17 rs 0b ck0, ck 0 --------- pll * * wire per clock loading table / wiring diagrams ba0-ba1 rba0-rba1 - > ba0-ba1: sdrams d0-d17 a0-a11,a12 ra0-ra11,ra12 - > a0-a11,a12: sdrams d0 - d17 ras rras - > ras : sdrams d0 - d17 cs0 cas rcas - > cas : sdrams d0 - d17 cke0 rcke0a - > cke: sdrams d0 - d8 we rwe - > we : sdrams d0 - d17 r e g i s t e r rckeb - > cke: sdrams d9 - d17 pck pck reset i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 a0 serial pd a1 a2 sa0 sa1 sa2 scl sda notes: 1. d q -to-i / o wiring may be changed within a byte. 2. d q/ d q s / dm / cke / s relationships must be maintained as shown. 3. d q ,d q s, adress and control resistors: 22 ohms. 4. vddid strap connections strap out (open): vdd = vdd q 5. sdram placement alternates between the back and front of the dimm. v dd, v ss v dd q vref v ddid strap: see note 4 v ddspd eeprom d0 - d17 d0 - d17 d0 - d17 rs 0- > cs : sdrams d0-d17
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 8 2002-09-10 (revision 0.91) block diagram: two bank 128mb x 72 ddr-i sdram dimm modules hys 72d128020gr using x4 organized sdrams on raw card version c pc k pc k rs 0 d q s4 d q s6 d q s2 d q 0 d q 1 d q 2 d q 3 d q 8 d q 9 d q 10 d q 11 d q 16 d q 17 d q 18 d q 19 d q 24 d q 25 d q 26 d q 27 d q 32 d q 33 d q 34 d q 35 d q 40 d q 41 d q 42 d q 43 d q 56 d q 57 d q 58 d q 59 d q s d0 d q s d q s d q s d q s d q s d q s d q s0 d1 d2 d3 d4 d5 d7 d q 48 d q 49 d q 50 d q 51 d q s d6 d q 4 d q 5 d q 6 d q 7 d q 12 d q 13 d q 14 d q 15 d q 20 d q 21 d q 22 d q 23 d q 28 d q 29 d q 30 d q 31 d q 36 d q 37 d q 38 d q 39 d q 44 d q 45 d q 46 d q 47 d q 60 d q 61 d q 62 d q 63 d q s d9 d q s d q s d q s d q s d q s d q s dm0 / d q s9 d10 d11 d12 d13 d14 d16 d q 52 d q 53 d q 54 d q 55 d q s d15 ck0, ck 0 --------- pll * cs cs cs cs cs cs cs cs cs cs cs s cs cs cs cs cs1 rs 1- > cs : sdrams d18 -d35 ba0-ba1 rba0-rba1 - > ba0-ba1: sdrams d0-d35 a0-a12 ra0-ra12 - > a0-a12: sdrams d0 - d35 ras rras - > ras :sdramsd0-d35 cs0 rs 0- > cs : sdrams d0-d17 v ss d q s1 d q s3 dm dm dm dm dm dm dm dm dm dm dm dm dm dm dm dm d q s5 d q s7 dm6 / d q s15 dm5 / d q s14 dm4 / d q s13 dm1 / d q s10 dm2 / d q s11 dm3 / d q s12 dm7 / d q s16 * wire per clock loading table / wiring diagrams rs 1 cas rcas - > cas :sdramsd0-d35 cke0 rcke0 - > cke: sdrams d0 - d17 we rwe - > we : sdrams d0 - d35 r e g i s t e r rcke1 - > cke: sdrams d18 - d35 d q s d18 d q s d q s d q s d q s d q s d q s d19 d20 d21 d22 d23 d25 d q s d24 cs cs cs cs cs cs cs cs dm dm dm dm dm dm dm dm d q s d27 d q s d q s d q s d q s d q s d q s i / o0 i / o1 i / o2 i / o3 d28 d29 d30 d31 d32 d34 d q s d33 cs cs cs cs cs s cs cs dm dm dm dm dm dm dm dm cb0 cb1 cb2 cb3 d q s d8 cs dm d q s8 d q s d26 cs dm cb4 cb5 cb6 cb7 d q s d17 cs dm dm8 / d q s17 d q s d35 cs dm cke1 reset i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 i / o0 i / o1 i / o2 i / o3 notes: 1. d q -to-i / o wiring may be changed within a byte. 2. d q/ d q s / dm / cke / s relationships must be maintained as shown. 3. d q ,d q s, adress and control resistors: 22 ohms. 4. vddid strap connections strap out (open): vdd = vdd q 5. sdram placement alternates between the back and front of the dimm. a0 serial pd a1 a2 sa0 sa1 sa2 scl sda v dd, v ss v dd q vref v ddid strap: see note 4 v ddspd eeprom d0 - d35 d0 - d35 d0 - d35
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 9 2002-09-10 (revision 0.91) absolute maximum ratings parameter symbol limit values unit min. max. input / output voltage relative to v ss v in, v out ?0.5 3.6 v power supply voltage on v dd / v dd q to v ss v dd, v dd q ?0.5 3.6 v storage temperature range t stg -55 +150 o c power dissipation (per sdram component) p d ?1w data out current (short circuit) i os ?50ma permanent device damage may occur if ?absolute maximum ratings? are exceeded. functional operation should be restricted to recommended operation conditions. exposure to higher than recommended voltage for extended periods of time affect device reliability supply voltage levels parameter symbol limit values unit notes min. nom. max. device supply voltage v dd 2.3 2.5 2.7 v - output supply voltage v dd q 2.3 2.5 2.7 v 1) input reference voltage v ref 0.49 x v dd q 0.5 x v dd q 0.51 x v dd q v2) termination voltage v tt v ref ?0.04 v ref v ref +0.04 v 3) eeprom supply voltage v ddspd 2.3 2.5 3.6 v 1 under all conditions, v dd q must be less than or equal to v dd 2 peak to peak ac noise on v ref may not exceed 2 % v ref (dc) . v ref is also expected to track noise variations in v dd q . 3 v tt of the transmitting device must track v ref of the receiving device. dc operating conditions (sstl_2 inputs) ( v dd q =2.5v, t a=70 c, voltage referenced to v ss) parameter symbol limit values unit notes min. max. dc input logic high v ih (dc) v ref +0.15 v dd q +0.3 v 1) dc input logic low v il (dc) ?0.30 v ref ?0.15 v ? input leakage current i il ?5 5 a1) output leakage current i ol ?5 5 a2) 1) the relationship between the v dd q of the driving device and the v ref of the receiving device is what determines noise margins. however, in the case of v ih (max) (input overdrive), it is the v dd q of the receiving device that is referenced. in the case where a device is implemented such that it supports sstl_2 inputs but has no sstl_2 outputs (such as a translator), and therefore no v dd q supply voltage connection, inputs must tolerate input overdrive to 3.0 v (high corner v dd q + 300 mv). 2) for any pin under test input of 0 v v in v dd q + 0.3 v. values are shown per ddr-sdram component.
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 10 2002-09-10 (revision 0.91) operating, standby and refresh currents (pc1600) notes 5 idd2p ma 2, 4 idd2f ma 2, 4 idd2 q ma 2, 4 idd3p ma 2, 4 idd5 ma 1, 4 ma 1, 4 1. the module idd values are calculated from the component idd datasheet values as: n * iddx[component] for single bank modules (n: number of components per module bank) n * iddx[component] + n * idd3n[component] for two bank modules (n: number of components per module bank) 2. the module idd values are calculated from the component idd datasheet values as: n * iddx[component] for single bank modules (n: number of components per module bank) 2 * n * iddx[component] for two bank modules (n: number of components per module bank) 3. d q i / o(idd q ) currents are not included into calculations: module idd values will be measured differently depending on load conditions 4. dram component currents only: module idd will be measured differently depending upon register and pll operation currents 5. test condition for maximum values: vdd = 2.7v ,ta = 10c 256mb x72 1bank -8 512mb x72 1bank -8 512mb x72 2bank -8 1gb x72 2bank -8 precharge power-down standby current : all banks idle ; power-down mode ; cke < =vilma x; tck = tck min precharge floating standby current : / cs > = vih min, all banks idle ; cke > =vihmin ; tck = tck min ,address and other control inputs changing once per clock cycle, vin = vref for d q ,d q sanddm. 288 630 ma 1, 3, 4 1620 ma 288 810 630 1260 396 ma 1, 3, 4 2, 4 ma 3060 1890 1710 810 active power-down standby current : one bank active ; power-down mode ; cke < =vilma x; tck = tck min ; vin = vref for d q ,d q sand dm. active standby current : one bank active ; active / precharge ; cs > =vih min ; cke > =vihmin ; trc = tras ma x; tck = tck min ; d q ,dm,and d q s inputs changing twice per clock cycle ; address and control inputs changing once per clock cycle operating current : one bank active ; burst = 2 ; reads ; continuous burst ; address and control inputs changing once per clock cycle ; 50 % of data outputs changing on every clock edge ; cl = 2 for ddr200, and ddr266a, cl=3 for ddr333 ; tck = tck min ; iout = 0ma operating current : one bank active ; burst = 2 ; writes ; continuous burst ; address and control inputs changing once per clock cycle ; 50 % of data outputs changing on every clock edge ; cl = 2 for ddr200, and ddr266a, cl=3 for ddr333 ; tck = tck min precharge quiet standby current : / cs > = vih min, all banks idle ; cke > =vihmin ; tck = tck min ,address and other control inputs stable at > =vihminor < =vilma x; vin = vref for d q ,d q s and dm. idd0 operating current : one bank ; active / read / precharge ; burst = 4 ; refer to the following page for detailed test conditions. operating current : one bank ; active / precharge ; trc=trcmin ; tck = tck min ; d q ,dm,andd q s inputs changing once per clock cycle ; address and control inputs changing once every two clock cycles 126 1800 1620 1215 1305 126 2700 2520 2, 4 576 792 252 2610 2430 1, 4 symbol unit parameter / condition idd4w idd4r idd3n idd1 198 1260 1350 1, 3, 4 4590 3780 54 54 108 ma 2295 ma 855 945 idd7 idd6 operating current :fourbank ; four bank interleaving with bl=4 ; refer to the following page for detailed test conditions. 1890 27,0 self-refresh current :cke < =0.2v ; external clock on ; tck = tck min auto-refresh current : trc = trfc min, distributed refresh 63 315 144 405 396 1935 3870 ma x ma x ma x ma x 1530 810 900
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 11 2002-09-10 (revision 0.91) operating, standby and refresh currents (pc2100) notes 5 idd2p ma 2, 4 idd2f ma 2, 4 idd2 q ma 2, 4 idd3p ma 2, 4 idd5 ma 1, 4 450 2115 4230 ma x ma x ma x ma x 1620 900 990 72 360 162 495 1035 1125 idd7 idd6 operating current : four bank ; four bank interleaving with bl=4 ; refer to the following page for detailed test conditions. 2025 27,0 self-refresh current :cke < =0.2v ; external clock on ; tck = tck min auto-refresh current : trc = trfc min, distributed refresh 1, 3, 4 5040 4050 54 54 108 ma 2520 ma symbol unit parameter / condition idd4w idd4r idd3n idd1 225 1530 1620 3240 3060 2, 4 648 900 288 2970 2790 1, 4 144 1980 1800 1395 1485 144 precharge quiet standby current : / cs > = vih min, all banks idle ; cke > =vihmin ; tck = tck min ,address and other control inputs stable at > =vihminor < =vilma x; vin = vref for d q ,d q sanddm. idd0 operating current : one bank ; active / read / precharge ; burst = 4 ; refer to the following page for detailed test conditions. operating current : one bank ; active / precharge ; trc = trc min ; tck = tck min ; d q ,dm,andd q s inputs changing once per clock cycle ; address and control inputs changing once every two clock cycles active power-down standby current : one bank active ; power-down mode ; cke < =vilma x; tck = tck min ; vin = vref for d q ,d q s and dm. active standby current : one bank active ; active / precharge ; cs > =vih min ; cke > =vihmin ; trc = tras ma x; tck = tck min ; d q , dm, and d q s inputs changing twice per clock cycle ; address and control inputs changing once per clock cycle operating current : one bank active ; burst = 2 ; reads ; continuous burst ; address and control inputs changing once per clock cycle ; 50 % of data outputs changing on every clock edge ; cl = 2 for ddr200, and ddr266a, cl=3 for ddr333 ; tck = tck min ; iout = 0ma operating current : one bank active ; burst = 2 ; writes ; continuous burst ; address and control inputs changing once per clock cycle ; 50 % of data outputs changing on every clock edge ; cl = 2 for ddr200, and ddr266a, cl=3 for ddr333 ; tck = tck min 3240 2250 2070 990 ma 1, 3, 4 2, 4 ma 720 ma 1, 3, 4 1980 ma 324 990 720 1440 450 ma 1, 4 1. the module idd values are calculated from the component idd datasheet values as: n * iddx[component] for single bank modules (n: number of components per module bank) n * iddx[component] + n * idd3n[component] for two bank modules (n: number of components per module bank) 2. the module idd values are calculated from the component idd datasheet values as: n * iddx[component] for single bank modules (n: number of components per module bank) 2 * n * iddx[component] for two bank modules (n: number of components per module bank) 3. d q i / o(idd q ) currents are not included into calculations: module idd values will be measured differently depending on load conditions 4. dram component currents only: module idd will be measured differently depending upon register and pll operation currents 5. test condition for maximum values: vdd = 2.7v ,ta = 10c 256mb x72 1bank -7 512mb x72 1bank -7 512mb x72 2bank -7 1gb x72 2bank -7 precharge power-down standby current : all banks idle ; power-down mode ; cke < =vilma x; tck = tck min precharge floating standby current : / cs > = vih min, all banks idle ; cke > =vihmin ; tck = tck min ,address and other control inputs changing once per clock cycle, vin = vref for d q ,d q s and dm. 324
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 12 2002-09-10 (revision 0.91) spd codes 256mb x72 1bank -7 256mb x72 1bank -8 512mb x72 1bank -7 512mb x72 1bank -8 512mb x72 2bank -7 512mb x72 2bank -8 1gb x72 2bank -7 1gb x72 2bank -8 he x he x he x he x he x he x he x he x 0 number of spd bytes 128 80 80 80 80 80 80 80 80 1 total bytes in serial pd 256 08 08 08 08 08 08 08 08 2 memory type ddr-sdram 07 07 07 07 07 07 07 07 3 numberofrowaddresses 13 0d0d0d0d0d0d0d0d 4 number of column addresses 10 / 11 0a 0a 0b 0b 0a 0a 0b 0b 5 number of dimm banks 1 / 2 0101010102020202 6 moduledatawidth x72 4848484848484848 7 moduledatawidth(cont?d) 0 0000000000000000 8 module interface levels sstl_2.5 04 04 04 04 04 04 04 04 9 sdramcycletimeatcl=2.5 7ns / 8ns 7080708070807080 10 access time from clock at cl = 2.5 0.75ns / 0.8ns 7580758075807580 11 dimmconfig ecc 0202020202020202 12 refresh rate / type self-refresh, 7.8ms 82 82 82 82 82 82 82 82 13 sdram width, primary x8 / x4 08 08 04 04 08 08 04 04 14 error checking sdram data width na 08 08 04 04 08 08 04 04 15 minimum clock delay for back-to-back random column address tccd=1clk 0101010101010101 16 burstlengthsupported 2,4&8 0e0e0e0e0e0e0e0e 17 numberofsdrambanks 4 0404040404040404 18 supportedcaslatencies caslatency=2&2.50c0c0c0c0c0c0c0c 19 cs latencies cs latency = 0 01 01 01 01 01 01 01 01 20 welatencies writelatency=1 0202020202020202 21 sdramdimmmoduleattributes registered 2626262626262626 22 sdram device attributes: general concurrent auto prechar g e c0 c0 c0 c0 c0 c0 c0 c0 23 min. clock cycle time at cas latency = 2 7.5ns / 10ns 75 a0 75 a0 75 a0 75 a0 24 access time from clock for cl = 2 0.75ns / 0.8ns 7580758075807580 25 minimumclockcycletimeatcl=1.5 notsupported 0000000000000000 26 accesstimefromclockatcl=1.5 notsupported 0000000000000000 27 minimumrowprechargetime 20ns 5050505050505050 28 minimum row act. to row act. delay trrd 15ns 3c 3c 3c 3c 3c 3c 3c 3c 29 minimum ras to cas delay trcd 20ns 50 50 50 50 50 50 50 50 30 minimum ras pulse width tras 45ns / 50ns 2d 32 2d 32 2d 32 2d 32 31 module bank density (per bank) 256mbyte / 512mbyte 40 40 80 80 40 40 80 80 32 addr. and command setup time 0.9ns / 1.1ns 90b090b090b090b0 33 addr. and command hold time 0.9ns / 1.1ns 90b090b090b090b0 34 data input setup time 0.5ns / 0.6ns 5060506050605060 35 data input hold time 0.5ns / 0.6ns 5060506050605060 36-40 supersetinformation ? 0000000000000000 41 minimum core cycle time trc 65ns / 70ns 41 46 41 46 41 46 41 46 42 min. auto refresh cmd cycle time trfc 75ns / 80ns 4b 50 4b 50 4b 50 4b 50 43 maximum clock cycle time tck 12ns 30 30 30 30 30 30 30 30 44 max. d q s-d q skew td q s q 0.5ns / 0.6ns 323c323c323c323c 45 x -factor t q hs 0.75ns / 1.0ns 75a075a075a075a0 46-61 supersetinformation ? 0000000000000000 62 spdrevision revision0.0 0000000000000000 63 checksum for bytes 0 - 62 ? ca bf 03 f8 cb c0 04 f9 64 manufacturersjedecidcode ? c1c1c1c1c1c1c1c1 65-71 manufacturer ? infi- neon infi- neon infi- neon infi- neon infi- neon infi- neon infi- neon infi- neon 72 module assembly location ? 73-90 module part number ? 91-92 module revision code ? 93-94 module manufacturing date ? 95-98 module serial number ? 99-127 ? ? 128-255 open for customer use ? byte # description
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 13 2002-09-10 (revision 0.91) electrical characteristics & ac timing for ddr-i components (for reference only) (0 c t a 70 c ; v dd q =2.5v 0.2v ; v dd =2.5v 0.2v) symbol parameter ddr266a -7 ddr200 -8 unit notes min max min max t ac d q output access time from ck / ck ? 0.75 + 0.75 ? 0.8 + 0.8 ns 1-4 t d q sck d q s output access time from ck / ck ? 0.75 + 0.75 ? 0.8 + 0.8 ns 1-4 t ch ck high-level width 0.45 0.55 0.45 0.55 t ck 1-4 t cl ck low-level width 0.45 0.55 0.45 0.55 t ck 1-4 t hp clock half period min (t cl, t ch) min (t cl, t ch) ns 1-4 t ck clock cycle time cl=2.5 712812ns1-4 t ck cl=2.0 7.5121012ns1-4 t dh d q and dm input hold time 0.5 0.6 ns 1-4 t ds d q and dm input setup time 0.5 0.6 ns 1-4 t ipw control and addr. input pulse width (each input) 2.2 2.5 ns 1, 10 t dipw d q and dm input pulse width (each input) 1.75 2 ns 1-4, 11 t h z data-out high-impedence time from ck / ck ? 0.75 + 0.75 ? 0.8 + 0.8 ns 1-4, 5 t l z data-out low-impedence time from ck / ck ? 0.75 + 0.75 ? 0.8 + 0.8 ns 1-4, 5 t d q ss write command to 1st d q s latching transition 0.75 1.25 0.75 1.25 t ck 1-4 t d q s q d q s-d q skew (for d q s & associated d q signals) + 0.5 + 0.6 ns 1-4 t q hs data hold skew factor + 0.75 + 1.0 ns 1-4 t q h data output hold time from d q st hp -t q hs t hp -t q hs ns 1-4 t d q sl,h d q s input low (high) pulse width (write cycle) 0.35 0.35 t ck 1-4 t dss d q s falling edge to ck setup time (write cycle) 0.2 0.2 t ck 1-4 t dsh d q s falling edge hold time from ck (write cycle) 0.2 0.2 t ck 1-4 t mrd mode register set command cycle time 14 16 ns 1-4 t wpres write preamble setup time 0 0 ns 1-4, 7 t wpst write postamble 0.40 0.60 0.40 0.60 t ck 1-4, 6 t wpre write preamble 0.25 0.25 t ck 1-4 t is address and control input setup time fast slew rate 0.9 1.1 ns 2-4, 10,11 slow slew rate 1.0 1.1 ns t ih address and control input hold time fast slew rate 0.9 1.1 ns slow slew rate 1.0 1.1 ns t rpre read preamble 0.9 1.1 0.9 1.1 t ck 1-4 t rpst read postamble 0.40 0.60 0.40 0.60 t ck 1-4 t ras active to precharge command 45 120,000 50 120,000 ns 1-4 t rc active to active / auto-refresh command period 65 70 ns 1-4
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 14 2002-09-10 (revision 0.91) t rfc auto-refresh to active / auto-refresh command period 75 80 ns 1-4 t rcd active to read or write delay 20 20 ns 1-4 t rp precharge command period 20 20 ns 1-4 t rrd active bank a to active bank b command 15 15 ns 1-4 t wr write recovery time 15 15 ns 1-4 t dal auto precharge write recovery + precharge time (twr / tck) + (trp / tck) t ck 1-4,9 t wtr internal write to read command delay 1 1 t ck 1-4 t x snr exit self-refresh to non-read command 75 80 ns 1-4 t x srd exit self-refresh to read command 200 200 t ck 1-4 t refi average periodic refresh interval 256mbit based 7.8 7.8 s1-4,8 1. input slew rate > =1v / ns for ddr266 and = 1v / ns for ddr200. 2. the ck / ck input reference level (for timing reference to ck / ck ) is the point at which ck and ck cross: the input reference level for signals other than ck / ck ,isv ref. ck / ck slew rate are > =1.0v / ns. 3. inputs are not recognized as valid until v ref stabilizes. 4. the output timing reference level, as measured at the timing reference point indicated in ac character- istics (note 3) is v tt . 5. t h z and t l z transitions occur in the same access time windows as valid data transitions. these parame- ters are not referred to a specific voltage level, but specify when the device is no longer driving (h z ), or begins driving (l z ). 6. the maximum limit for this parameter is not a device limit. the device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 7. the specific requirement is that d q s be valid (high, low, or some point on a valid transition) on or before this ck edge. a valid transition is defined as monotonic and meeting the input slew rate specifi- cations of the device. when no writes were previously in progress on the bus, d q s will be transitioning from hi- z to logic low. if a previous write was in progress, d q s could be high, low, or transitioning from high to low at this time, depending on t d q ss . 8. a maximum of eight autorefresh commands can be posted to any given ddr sdram device. 9. for each of the terms, if not already an integer, round to the next highest integer. tck is equal to the actual system clock cycle time. 10. these parameters guarantee device timing, but they are not necessarily tested on each device 11. fast slew rate > =1.0v / ns , slow slew rate > =0.5v / ns and < 1v / ns for command / address and ck & ck slew rate > 1.0 v / ns, measured between voh(ac) and vol(ac) electrical characteristics & ac timing for ddr-i components (for reference only) (0 c t a 70 c ; v dd q =2.5v 0.2v ; v dd =2.5v 0.2v) symbol parameter ddr266a -7 ddr200 -8 unit notes min max min max
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 15 2002-09-10 (revision 0.91) package outlines raw card a (one memory bank) module package ddr-i registered dimm modules raw card a 256mbyte modules (one physical bank, 9 components) l-dim-184-10, raw card a, one bank 144 145 184 17.80 3 10.0 3 detail of contacts a 2.5 1 1.27 0.20 +0.05 - +0.20 - +0.15 - 133.35 2.3 typ. 53 52 64.77 92 2.3 typ. 43.43 pin 1 +0.13 - +0.15 - 6.62 49.53 4.0 1.27 4.0 max. +0.1 - pin 93 2.5d front view backside view detail of contacts b 3.8 typ. 2.175 6.35 1.8 0.9r pll register register
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 16 2002-09-10 (revision 0.91) package outlines raw card a (two memory banks) module package ddr-i registered dimm modules raw card a 512mbyte module (two physical banks, 18 components) l-dim-184-10, raw card a, two banks 144 145 184 17.80 3 10.0 3 detail of contacts a 2.5 1 1.27 0.20 +0.05 - +0.20 - +0.15 - 133.35 2.3 typ. 53 52 64.77 92 2.3 typ. 43.43 pin 1 +0.13 - +0.15 - 6.62 49.53 4.0 1.27 4.0 max. +0.1 - pin 93 2.5d front view backside view detail of contacts b 3.8 typ. 2.175 6.35 1.8 0.9r pll register register
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 17 2002-09-10 (revision 0.91) package outlines raw card b module package ddr-i registered dimm modules raw card b 512mbyte modules (one physical bank, 18 components) l-dim-184-8, raw card b 144 145 184 17.80 3 10.0 3 detail of contacts a 2.5 1 1.27 0.20 +0.05 - +0.20 - +0.15 - 133.35 2.3 typ. 53 52 64.77 92 2.3 typ. 43.43 pin 1 +0.13 - +0.15 - 6.62 49.53 4.0 1.27 4.0 max. +0.1 - pin 93 2.5d front view backside view detail of contacts b 3.8 typ. 2.175 6.35 1.8 0.9r pll register register
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 18 2002-09-10 (revision 0.91) package outlines raw card c module package ddr-i registered dimm modules raw card c 1 gbyte modules (two physical banks, 36 components) l-dim-184-11, raw card c 144 145 184 17.80 3 10.0 3 detail of contacts a 2.5 1 1.27 0.20 +0.05 - +0.20 - +0.15 - 133.35 2.3 typ. 53 52 64.77 92 2.3 typ. 43.43 pin 1 +0.13 - +0.15 - 6.62 49.53 4.0 1.27 6.8 max. +0.1 - pin 93 2.5d front view backside view detail of contacts b 3.8 typ. 2.175 6.35 1.8 0.9r pll register register
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 19 2002-09-10 (revision 0.91) application note: power up and power management on ddr registered dimms (according to jedec ballot jc-42.5 item 1173) 184-pin double data rate (ddr) registered dimms include two new features to facilitate controlled power-up and to minimize power consumption during low power mode. one feature is externally controlled via a system- generated reset signal ; the second is based on module detection of the input clocks. these enhancements permit the modules to power up with sdram outputs in a high- z state (eliminating risk of high current dissipa- tions and / or dotted i / os), and result in the powering-down of module support devices (registers and phase- locked loop) when the memory is in self-refresh mode. the new reset pin controls power dissipation on the module?s registers and ensures that cke and other sdram inputs are maintained at a valid ?low? level during power-up and self refresh. when reset is at a low level, all the register outputs are forced to a low level, and all differential register input receivers are powered down, resulting in very low register power consumption. the reset pin,locatedondimmtab # 10, is driven from the system as an asynchronous signal according to the attached details. using this function also permits the system and dimm clocks to be stopped during memory self refresh operation, while ensuring that the sdrams stay in self refresh mode. thefunctionforresetisasfollows: as described in the table above, a low on the reset input ensures that the clock enable (cke) signal(s) are maintained low at the sdram pins (cke being one of the 'q' signals at the register output). holding cke low maintains a high impedance state on the sdram d q ,d q s and dm outputs ? where they will remain until acti- vated by a valid ?read? cycle. cke low also maintains sdrams in self refresh mode when applicable. the ddr pll devices automatically detect clock activity above 20mhz. when an input clock frequency of 20mhz or greater is detected, the pll begins operation and initiates clock frequency lock (the minimum operat- ing frequency at which all specifications will be met is 95mhz). if the clock input frequency drops below 20mhz (actual detect frequency will vary by vendor), the pll vco (voltage controlled oscillator) is stopped, outputs are register inputs register outputs reset ck ck data in (d) data out ( q ) h rising falling h h h rising falling l l h l or h l or h xq o hhigh z high zx illegal input conditions l x or hi- zx or hi- zx or hi- z l x :don?tcare,hi- z : high impedance, q o: data latched at the previous of ck risning and ck falling
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 20 2002-09-10 (revision 0.91) made high- z , and the differential inputs are powered down ? resulting in a total pll current consumption of less than 1ma. use of this low power pll function makes the use of the pll reset (or g pin) unnecessary, and it is tied inactive on the dimm. this application note describes the required and optional system sequences associated with the ddr regis- tered dimm ' reset ' function. it is important to note that all references to cke refer to both cke0 and cke1 for a 2-bank dimm. because reset applies to all dimm register devices, it is therefore not possible to uniquely control cke to one physical dimm bank through the use of the reset pin. power-up sequence with reset ?required 1. the system sets reset at a valid low level. this is the preferred default state during power-up. this input condition forces all register outputs to a low state independent of the condition on the register inputs (data and clock), ensuring that cke is at a stable low-level at the ddr sdrams. 2. the power supplies should be initialized according to the jedec-approved initialization sequence for ddr sdrams. 3. stabilization of clocks to the sdram the system must drive clocks to the application frequency (pll operation is not assured until the input clock reaches 20mhz). stability of clocks at the sdrams will be affected by all applicable system clock devices, and time must be allotted to permit all clock devices to settle. once a stable clock is received at the dimm pll, the required pll stabilization time (assuming power to the dimm is stable) is 100 microseconds. when a stable clock is present at the sdram input (driven from the pll), the ddr sdram requires 200 sec prior to sdram operation. 4. the system applies valid logic levels to the data inputs of the register (address and controls at the dimm con- nector). cke must be maintained low and all other inputs should be driven to a known state. in general these com- mands can be determined by the system designer. one option is to apply an sdram ?nop? command (with cke low), as this is the first command defined by the jedec initialization sequence (ideally this would be a ?nop deselect? command). a second option is to apply low levels on all of the register inputs to be consistent with the state of the register outputs. 5. the system switches reset toalogic ? high ? level. the sdram is now functional and prepared to receive commands. since the reset signal is asynchronous, setting the reset timing in relation to a specific clock edge is not required (during this period, register inputs must remain stable). 6. the system must maintain stable register inputs until normal register operation is attained. the registers have an activation time that allows their clock receivers, data input receivers, and output drivers sufficient time to be turned on and become stable. during this time the system must maintain the valid logic levels described in step 5. it is also a functional requirement that the registers maintain a low state at the cke outputs to guarantee that the ddr sdrams continue to receive a low level on cke. register activation time (t (act) ), from asynchronous switching of reset from low to high until the registers are stable and ready to accept an input signal, is specified in the register and dimm do-umentation. 7. the system can begin the jedec-defined ddr sdram power-up sequence (according to the jedec- pproved initialization sequence). self refresh entry (reset low, clocks powered off) ? optional self refresh can be used to retain data in ddr sdram dimms even if the rest of the system is powered down and the clocks are off. this mode allows the ddr sdrams on the dimm to retain data without external clocking. self refresh mode is an ideal time to utilize the reset pin, as this can reduce register power consumption (reset low deactivates register ck and ck, data input receivers, and data output drivers).
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 21 2002-09-10 (revision 0.91) 1. the system applies self refresh entry command. (cke low, cs low, ras low, cas low, we high) note: the commands reach the ddr sdram one clock later due to the additional register pipelining on a registered dimm. after this command is issued to the sdram, all of the address and control and clock input conditions to the sdram are don?t cares? with the exception of cke. 2. the system sets reset at a valid low level. this input condition forces all register outputs to a low state, independent of the condition on the registerm inputs (data and clock), and ensures that cke, and all other control and address signals, are a stable low- level at the ddr sdrams. since the reset signal is asynchronous, setting the reset timing in relation to a specific clock edge is not required. 3. the system turns off clock inputs to the dimm. (optional) a. in order to reduce dimm pll current, the clock inputs to the dimm are turned off, resulting in high- z clock inputs to both the sdrams and the registers. this must be done after the reset deactivate time of the reg- ister (t (inact) ). the deactivate time defines the time in which the clocks and the control and address sig- nals must maintain valid levels after reset low has been applied and is specified in the register and dimm documentation. b. the system may release dimm address and control inputs to high- z . this can be done after the reset deactivate time of the register. the deactivate time defines the time in which the clocks and the control and the address signals must maintain valid levels after reset low has been applied. it is highly recommended that cke continue to remain low during this operation. 4. the dimm is in lowest power self refresh mode. self refresh exit (reset low, clocks powered off) ? optional 1. stabilization of clocks to the sdram. the system must drive clocks to the application frequency (pll operation is not assured until the input clock reaches ~ 20mhz). stability of clocks at the sdrams will be affected by all applicable system clock devices, and time must be allotted to permit all clock devices to settle. once a stable clock is received at the dimm pll, the required pll stabilization time (assuming power to the dimm is stable) is 100 microseconds. 2. the system applies valid logic levels to the data inputs of the register (address and controls at the dimm con- nector). cke must be maintained low and all other inputs should be driven to a known state. in general these com- mands can be determined by the system designer. one option is to apply an sdram ?nop? command (with cke low), as this is the first command defined by the jedec self refresh exit sequence (ideally this would be a ?nop deselect? command). a second option is to apply low levels on all of the register inputs, to be con- sistent with the state of the register outputs. 3. the system switches reset toalogic ? high ? level. the sdram is now functional and prepared to receive commands. since the reset signal is asynchronous, reset timing relationship to a specific clock edge is not required (during this period, register inputs must remain stable). 4. the system must maintain stable register inputs until normal register operation is attained. the registers have an activation time that allows the clock receivers, input receivers, and output drivers suffi- cient time to be turned on and become stable. during this time the system must maintain the valid logic levels described in step 2. it is also a functional requirement that the registers maintain a low state at the cke out- puts to guarantee that the ddr sdrams continue to receive a low level on cke. register activation time (t (act) ), from asynchronous switching of reset from low to high until the registers are stable and ready to accept an input signal, is specified in the register and dimm do-umentation. 5. system can begin the jedec-defined ddr sdram self refresh exit procedure. self refresh entry (reset low, clocks running) ? optional
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 22 2002-09-10 (revision 0.91) although keeping the clocks running increases power consumption from the on-dimm pll during self refresh, this is an alternate operating mode for these dimms. 1. system enters self refresh entry command. (cke low, cs low, ras low, cas low, we high) note: the commands reach the ddr sdram one clock later due to the additional register pipelining on a registered dimm. after this command is issued to the sdram, all of the address and control and clock input conditions to the sdram are don?t cares ? with the exception of cke. 2. the system sets reset at a valid low level. this input condition forces all register outputs to a low state, independent of the condition on the data and clock register inputs, and ensures that cke is a stable low-level at the ddr sdrams. 3. the system may release dimm address and control inputs to high-z. this can be done after the reset deactivate time of the register (t (inact) ). the deactivate time describes the time in which the clocks and the control and the address signals must maintain valid levels after reset low has been applied. it is highly recommended that cke continue to remain low during the operation. 4. the dimm is in a low power, self refresh mode. self refresh exit (reset low, clocks running) ? optional 1. the system applies valid logic levels to the data inputs of the register (address and controls at the dimm con- nector). cke must be maintained low and all other inputs should be driven to a known state. in general these com- mands can be determined by the system designer. one option is to apply an sdram ?nop? command (with cke low), as this is the first command defined by the self refresh exit sequence (ideally this would be a ?nop deselect? command). a second option is to apply low levels on all of the register inputs to be consistent with the state of the register outputs. 2. the system switches reset to a logic 'high' level. the sdram is now functional and prepared to receive commands. since the reset signal is asynchronous, it does not need to be tied to a particular clock edge (during this period, register inputs must continue to remain stable). 3. the system must maintain stable register inputs until normal register operation is attained. the registers have an activation time that allows the clock receivers, input receivers, and output drivers suffi- cient time to be turned on and become stable. during this time the system must maintain the valid logic levels described in step 1. it is also a functional requirement that the registers maintain a low state at the cke out- puts in order to guarantee that the ddr sdrams continue to receive a low level on cke. this activation time, from asynchronous switching of reset from low to high, until the registers are stable and ready to accept an input signal, is t (act ) as specified in the register and dimm documentation. 4. the system can begin jedec defined ddr sdram self refresh exit procedure. self refresh entry/exit (reset high, clocks running) ? optional as this sequence does not involve the use of the reset function, the jedec standard sdram specification explains in detail the method for entering and exiting self refresh for this case. self refresh entry (reset high, clocks powered off) ? not permissible in order to maintain a valid low level on the register output, it is required that either the clocks be running and the system drive a low level on cke, or the clocks are powered off and reset is asserted low according to the
hys 72dxx0xxgr-7/8-b registered ddr-i sdram-modules infineon technologies 23 2002-09-10 (revision 0.91) sequence defined in this application not e. in the case where reset remains high and the clocks are powered off, the pll drives a high- z clock input into the register clock input. without the low level on reset an unknown dimm state will result.


▲Up To Search▲   

 
Price & Availability of HYS72D128020GR-7-B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X